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1 Relating the knowledge of different agents

So far, in a system with multiple agents, we have mostly considered their knowledge in
isolation: we have not really investigated statements such as “K1 knows more than K2”, or
“K3 is as knowledgeable as K1 and K2 together”. You might recall that we did mention a
notion of “what K1 and K2 know between each other”, namely the distributed knowledge
between them, D{1,2}. However, we did not define this operator as the knowledge of some
agent, but instead just said that w � D{1,2}ϕ iff w′ � ϕ for all w′ such that (w,w′) is both
in K1 and in K2. Either way, it seems useful to be able to characterise when statements
like that are true, particularly if we seek to use Kripke structures for security, where typical
questions we want to answer may look like “if these two agents collude, could they learn
more than the Average User?”.

To start with, we can try to make sense of the first statement. Suppose we have fixed a
model M ∈ Mrst

n . It seems quite reasonable to say that if “K1 knows at least as much as
K2”, then if K2 knows something, then K1 must know it as well:

K2ϕ⇒ K1ϕ. (KImpl)

In fact, it’s reasonable to take this axiom as characterising “knowing at least as much”, as
it is equivalent to saying that “what K1 knows at w”, I1,w , {ϕ ∈ Ln | w � K1ϕ}, is a
superset of what K2 knows at w, I2,w, for any world w.

What can we say about K1 and K2 in a model of this axiom (a structure in which it is
valid)? Not much, it turns out. For suppose that the structure is such that all the same
primitive propositions are true at every world. Then every agent knows exactly the same
formulas, namely those that are true everywhere, irrespective of their knowledge relation
Ki! (This is a simple consequence of knowledge generalization.)

To have any hope of saying something interesting, we need to add an extra assumption.
The assumption that we make is that the language of primitive propositions is expressive
enough to distinguish all the worlds. Specifically, we assume that for every world w, there
exists a characteristic formula χw, which does not include any modalities, which is only
true at that world:

� w � χw,

� w′ � ¬χw, for all w′ 6= w.
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Given this assumption, it turns out that (KImpl) corresponds to an intuitive relation be-
tween the equivalence relations.

Theorem 1.1. Suppose M = (S, π,K1,K2) is a Kripke structure inMrst
2 and has charac-

teristic formulae. Then (KImpl) is valid in M if and only if K1 ⊆ K2.

Proof. “if”: Follows by expanding definitions. For arbitrary w and ϕ, we have w � Kiϕ iff
w′ � ϕ for all w′ ∈ S such that (w,w′) ∈ Ki. So w � K2ϕ implies w′ � ϕ for all w′ such that
(w,w′) ∈ K2. Hence w′ � ϕ for all w′ such that (w,w′) ∈ K1 ⊆ K2, and hence w � K1ϕ.

“only if”: Suppose (w,w′) ∈ K1, but not ∈ K2. Then it is easily verified that w � K2¬χw′ ,
but w � ¬K1¬χw′ . So (KImpl) is not valid in M .

So it turns out that the set inclusion order between equivalence relations characterises
the logical notion of “knowing at least as much”, as captured by (KImpl). What does this
order look like? For four worlds:

[1234]

[123][4] [124][3] [134][2] [1][234] [12][34] [13][24] [14][23]

[12][3][4] [13][2][4] [14][2][3] [1][23][4] [1][24][3] [1][2][34]

[1][2][3][4]

In general, the number of possible partitions is described by the Bell number Bn.
It is customary to define notation for an ordering operator so that “less” looks like “less

knowledge”, which requires flipping the direction of set inclusion: we write K1 v K2 iff
K1 ⊇ K2. The top element of the above Hasse diagram is then “greatest” under v, while
being “least” under ⊆.

2 The Lattice of Information

Now that we have defined this partial order, we would like to tease out some more ways
of relating the knowledge of agents. One natural thing to do with partial orders is to ask
about least upper bounds for some collection of points (a term that is often used for the
elements on which an order is defined; here, our points are partitions of the set of worlds),
which are the least points that are greater than every point in that collection; and, dually,
greatest lower bounds. Not all partial orders come with either, or both; but when they do,
they are called lattices.
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Definition 2.1. A lattice (S,≤,∧,∨) is a partially ordered set (S,≤) together with two
binary operators ∧ (meet) and ∨ (join), which give the greatest lower bound and the least
upper bound respectively.

(Note relation between operator visuals and what they stand for!) Lubs and Glbs turn
out to exist for our information ordering v. The resulting lattice is called the Lattice of
Information (LoI) on a set S, (Part(S),v,t,u).

Under our interpretation of the ordering v as “more”=“more knowledge”, a least upper
bound K1 tK2 of K1 and K2 would correspond to a relation that encodes the least knowl-
edge that one can have while having at least as much knowledge as either K1 or K2; and
the greatest lower bound K1 uK2 would correspond to the most knowledge that one can
have while having no more than either.

It may not be unexpected that the join of K1 and K2 in fact represents the result of
joining the knowledge of K1 and K2, that is, knowledge that includes that in K1 (as it is an
upper bound on K1) and that in K2 (as it is an upper bound on K2) but no more (as it is a
least upper bound). This is what we have previously encountered as distributed knowledge.

Theorem 2.2. Suppose M = (S, π,K1,K2,K3) is a Kripke structure in Mrst
3 and has

characteristic formulae. Then D1,2ϕ ⇔ K3ϕ is valid in M for all ϕ if and only if K3 =
K2 tK1.

Proof. We first establish that K1 tK2 = K1 ∩ K2. Statement follows.

What about their meet? Unlike in the case of the join, the definition of the meet is not
actually so straightforward, because the union of two equivalence relations is not in general
an equivalence relation. However, it turns out that the minimum amount of work we can
do to “fix up” the union – which is to form the transitive closure – does in fact give us the
greatest lower bound, and this turns out to correspond to the notion of common knowledge
that we have seen before.

Theorem 2.3. Suppose M = (S, π,K1,K2,K3) is a Kripke structure in Mrst
3 and has

characteristic formulae. Then C1,2ϕ ⇔ K3ϕ is valid in M for all ϕ if and only if K3 =
K2 uK1.

Homework problems

1. A lattice can also be defined algebraically in terms of the behaviour of ∧ and ∨, by
asserting that a∨(a∧b) = a∧(a∨b) = a for all elements a, b. Show that this definition
is equivalent to the glb/lub definition. Explain intuitively what this axiom means in
the Lattice of Information.

2. A complete lattice is one in which joins and meets
∧
S and

∨
S can be formed for

infinite sets S as well. Show that, assuming there exists a maximum and minimum
element (a > and ⊥ such that > ≥ a ≥ ⊥ for all a), existence of infinite-set joins in
fact implies existence of infinite-set meets, and vice versa.
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3. We have established that distributed and common knowledge can be modelled as the
knowledge of a particular special agent. There are some modalities for which this is
not possible. In the following questions, you should prove or disprove.

(a) Recall the “everybody knows” modality EG, which we used in defining common
knowledge. For general K1 and K2, does there exist an equivalence relation
K3 such that E{1,2}ϕ ⇔ K3ϕ? If not, is this possible with a general (non-
equivalence) relation K3? What if K1 and K2 are themselves not equivalence
relations?

(b) The “somebody knows” modality SG is defined by SGϕ⇔ ∃i ∈ G.Kiϕ. For gen-
eral K1 and K2, does there exist an equivalence relation K3 such that S{1,2}ϕ⇔
K3ϕ? If not, is this possible with a general (non-equivalence) relation K3? What
if K1 and K2 are themselves not equivalence relations?
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