
Towards relating hyper-

and epistemic-temporal logics

Matvey Soloviev

Remote talk @ PLAS 2024, 2024-10-14

Joint work with Vineet Rajani and Musard Balliu

October 13, 2024

1

Overview

KCTL∗ and HyperCTL∗ represent two major classes of logics for security

properties. Which one is more expressive?

Bozzelli et al. (2014): incomparable, but HyperCTL∗ plus a linear past

operator subsumes KCTL∗.

Rabe (2016): HyperLTL plus quantification over props also subsumes KLTL.

This work: KCTL* plus quantification over props subsumes HyperCTL*.

2

Background: Formal specification of security properties

We want to formally specify and verify security properties, which usually compare

behaviour of programs to counterfactual, alternative runs.

Common specification logics such as LTL and CTL* are inadequate, as they

describe single executions.

3

Background: Hyperproperties and hyperlogics

Hyperproperties (Clarkson-Schneider 2008) were introduced as a formalism to

describe and stratify security properties in terms of how many runs need to be

considered simultaneously to describe them.

As companion logics to this framework, Clarkson et al. (2014) introduce

HyperLTL and HyperCTL*, which extend the respective temporal logics by

adding quantification over runs.

4

Background: Epistemic-temporal logics

Another lineage of logics derives from formal models of knowledge (Hintikka

1962, Halpern 1986...). Security properties are represented in terms of the

knowledge of agents involved in the system.

Such logics don’t constrain the number of alternative runs to be considered, and

don’t let you refer to individual counterfactual runs. Instead, they package

quantifications such as “in no run that A considers possible, . . . ”.

When added into LTL and CTL*, we get the logics KLTL and KCTL*.

5

Comparing expressivity

The two families of logics have strengths and weaknesses in terms of tractability

and intuition. Common security properties, however, can be expressed in either

(S.-B.-Guanciale 2023). This raises the question: Which one is more expressive?

Bozzelli et al. (2014) show that KCTL* and HyperCTL* are incomparable –

examples in each that are inexpressible in the other.

Also in Bozzelli et al. (2014): adding past modalities X− and U− to

HyperCTL* produces a logic that is stronger than either.

Rabe (2016): adding quantification over propositions ∃a. ϕ(a), which binds

an arbitrary proposition to the variable a, to HyperLTL(!) also produces a

logic QPTL that subsumes both HyperLTL and KLTL.

6

Our work

These results paint a picture that suggests that hyperlogics may be more

powerful – you just need to add a little expressivity to them to subsume

epistemic-temporal ones. But is this actually true?

We show that by adding quantification over propositions to KCTL*, we can

likewise obtain a logic KPCTL* that subsumes HyperCTL*.

7

Our work

These results paint a picture that suggests that hyperlogics may be more

powerful – you just need to add a little expressivity to them to subsume

epistemic-temporal ones. But is this actually true?

We show that by adding quantification over propositions to KCTL*, we can

likewise obtain a logic KPCTL* that subsumes HyperCTL*.

7

Details

We construct a polynomial-time reduction that

given a HyperCTL* model H , constructs a KPCTL* model Λ(H),

and, given any HyperCTL* formula ϕ, constructs a KPCTL* formula JϕK

such that �Λ(H) JϕK iff �H ϕ.

8

Excerpt of the logics

HyperCTL*:

ϕ ::= > | p[x] | ¬ϕ | ϕ ∨ ϕ | Xϕ | ϕUϕ | ∃x .ϕ
Π, y , i �K p[x] ⇔ p ∈ V (Π(x)(i))

Π, y , i �K ∃x .ϕ ⇔ Π[x 7→ π′], x , i �K ϕ

for some initial path π′ of K s.t. π′[0, i] = Π(y)[0, i]

KCTL*:

ϕ ::= > | p | ¬ϕ | ϕ ∨ ϕ | Xϕ | ϕUϕ | ∃ϕ | Kaϕ

π, i �Λ p ⇔ p ∈ V (π(i))

π, i �Λ Kaϕ ⇔ for all initial paths π′ of K s.t.

V (π[0, i]) and V (π′[0, i]) are Obsa-equivalent, π′, i �Λ ϕ.

9

Augmenting KCTL*

To obtain KPCTL*, we add proposition bindings to the context of KCTL*, and

use them to interpret quantification over propositions:

Φ, π, i �Λ P ⇔ π, i �Λ Φ(P)

Φ, π, i �Λ ∃P . ϕ ⇔ ∃ψ ∈ KCTL*: Φ[P 7→ ψ], π, i �Λ ϕ

10

Characteristic formulae

Our proof depends on the existence of characteristic formulae for runs: formulae

which are true everywhere in a particular run and nowhere else (or in some run

suffix, for branching-time logics).

The same assumption is baked into QPTL’s quantification over propositions,

which is implemented as a quantification over truth tables. We just need to make

it explicit as we use an intensional variant, where quantification is over KCTL*

formulae.

11

Knowledge modalities

The model Λ(H) is just H with two special knowledge modalities K+ and K−.

K+ represents “knowing everything”, and relates a particular point in a run only

to corresponding points where the history is the same.

K− represents “knowing nothing”, and relates a particular point to corresponding

points in all runs (we assume the setting is synchronous). This lets us access all

runs.

12

Detecting characteristic formulae

Given a KPCTL* formula ψ, we can encode the property that FGψ is the

characteristic formula of the current run as follows:

CHAR(ψ) , FGψ ∧ ∀ϕ. (FGϕ)⇒ K−((FGψ)⇒ FGϕ)

Here, F and G are standard derived “eventually” and “forever” modalities; FGϕ

thus means that ϕ holds over some suffix of the current run.

This allows us to quantify over just the characteristic formulae. We will use this

as a gadget to emulate quantification over paths.

13

Converting formulae

To define the reduction of formulae J · K, we convert existential HyperCTL*

quantification over branches x into existential quantification over propositions Px

which are characteristic formulae of some path:

J∃x .ϕK , ∃Px .¬K+¬(CHAR(Px) ∧ JϕK).

In HyperCTL*, atomic propositions p have to be evaluated with respect to a

path variable x . We convert this by setting

Jp[x]K , K−(FGPx ⇒ p),

using K− to pick out, from among all runs, the one where the characteristic

formula Px holds, and evaluate p there.

14

